TTCOM/I-197

FURTHER INTERROGATION OT AMTSRAT SHULZE OR OKM/4 SKL III

Attachea is a report on a further interrogation of Amtsrat SCHULZE carried out at HARBURG on 28/29 May, 1946, by Major G.K. BROWN, I.C., to obtain replies to questions set by OP-20-G and L.S.I.C. mainly on American and British Naval Pachine Traffic.
2. Questions on certain points in oonnection with British Machine Cyphers necessitateé further interrogation of Oborreg: TRNOW whoso replies have been incorporated in this report.
3. Previous reports on the interrogation of SCHULZE were issued as Ticom/I-141 and Ticom/I-147.
4. The remarks in para 2 regarding "TBC" result from a corruption of the original request, which was for "ABC" (E.C.M.). "Verfahren Um" is the C.C.M. and "DUPYF" a U.S. Naval Strip System.

Ticom
Ticom ${ }^{\text {2nd July, }} 1946$. No. of Pages: 8

Distribution:
L.S.I.C.

```
T
S
H
M
L
Z
63 for Dr. © %r.jorgan
86
9 1
Ticom Filu: (4 conies)
```

U,S.
U.S.L.O.

INTERROGATION REPOM ON AMTSRAT SCHULZE.

DATE O INTERROGATION:	$28 / 29$ May, 1946.
PIACR OT INTGRROGATION:	HAMBURG.
OFICIR CARRYING OUT INTERROGATION:	
	MAJOR G.K. BROWN, INT. CORPS.

I. General

SCHULZR now works with ino. 10 GFRMAN NEWS SERVICT at ROTHENBAUM STR. 169, HAMBURG, which isirun by a BRITISH official, Mr. MORGAN (Telephone No. 555846 , Extenstion 35). In carrying out the investigation it was also found necessary to interrogate OBERRRGIERUNGSRAT TRANOW on various points regarding BRITISH ciphers.
II. Detailed Interrogation

1. Jrganisation of Abteilung 4 SKI III
(i) fubers of personnel. In the whole of 4 SKL III there were in the middie of 1942 as many as 1100 people engaged. The English ciphers section under ORR TRANON at this time numbered 730, SOHULZE's Amerioan section numbered 52 but was later reduced to about 20. General reductions of persomel were becoming mogressively larger in 1944 and 1945, as more and more of whe persomel were sent to the front. SCHULZE also lost personnel to Korventrikapirien sincer, of whom more later.
(ii) Departments. Head of III was KAPITABN ZUR SEE KUPFirr. IIIa, b, i and were concerned with co-orainating the results of cipher breaiks, etc. The heads of these sections were respectively RRGiITTAN KAPITAEN VON VOIGT, KORVETTEN KAPITAEN HERICINN, KORVITITEN RAPITLEN BERINGUIER and AMTSRAT BUCHFOLZ.
(iii) Section IIIF. This was controlled by ORR TRINOW who was concemod with all research on WNGLISH NAVAL Codes and Cirphers. The section was sub-diviäed into IIIFn, under RR Dr. THOMA (who
 MERCHANI NMVY Code, etc). IIIPM (RR Dr. SCHEURIE - Verfahren STETTIN and ULI,) IIIFq (OBLTN. KOL工HITZ - LOXO, COROK, MEDOK, etc).

Section İIr controlled by KPR ITN. HPRMMNN, dealt entirely with RUSSIM. FIRLIMN was a German Russian and SCHULZE last saw him in the RBERSWAID area.

Section IIIu controlied by SCHUIZE, dealt with research on USi NiVIL traficic, particularly on the FAGBLIN machine, and on RMNCH and SWEDISH traffic.

Section IIIv controlied by ORR ZRiNKE. FRiNKE was SCHULZE's predecossor as had of IIIu, but was apparently replaced by SOEULZ \cdots ing to his increasing lack of success and nem ideas. Section IIV merely assisted IIIu and GRNKE was eventually in December 19,4 losted to OKH. SCHULZE last sam him in Jenuary 1945 at EBEinilidis and thinks he stayed in BERLTN after the collapse.

Dechassilled loy 1 D . Janoselts
Please turn over

IICOM/I-197
2. Verfahren UMM, TBC and TYPCX.

Work on these systems was carried out under the atrution of Thinow, although SCHULZE from time to time undombtedly gave some assistance.
(i) Verfahren UM. A new machine cipher began to be intercepted in April 1944. Traffic came from the south and south-east coastal areas and was assumed to be convoy traffic. It was regarded as ons more pointer to the imminent invasion.

Deviation Percentage and Z-Strip investigations established that the machine was neither TYFEX or HAGBLIN. 20 men plus a HOLSERITH component worked on the new cipher for six weeks, and then gave it up. Other matters at this time were more pressing and personnel was too short.
(ii) Verfahren TBC. Neither SCHULETE nor TRANOW was: too clear as to what was meant by TBC, but guessed, reasonably enough, that the Tactical Bomber Code was referred to. This code was extremely simple, and was reał currently. It was eventually handed over to the LUFTHLFTH. No HOIUFRITH component, of course, was used in breaking.
(iii) TYPPX. Quite obviously, the main effort on TYPEX was made elsewhere, probablyat OKW/Chi. Nevertheless, TRANOW and SCHUZE both from tine to tine investigated its charactoristics, mainly because TYPEX traffic increasingly appeared on NAVAL links. The eventual conclusion of 4 SKL III (and according to TRANOW, of OKI and OKW/Chi also) was that the system was unbreakable without oepturing at least some indicators and probably the machine itself. A TYPEX machine was captured in 1940 at either BREST or DUNKIRK, but without drums, end was therefore useless. TRANOW mentions that throughout researches on TYPEX, messages were always too short to enable even hope of a break and the number of indicators was extremely large, thus reducing to almost nothing the chance of finding two messages on the same setting. He mentioned two personalities at 0KM/Chi who were regarded as experts on machine systems, and also worked on TYPEX, a Dr. HUETHENHAIN and a Dr. STMINBACH, who, at the time of the collapse, were certainly in the BRITISH Zone.
3. U.S. Systan with Indicator DUPYH

DUFYH was readable shortly after the outbreak or war in the PACIFIC for roughly 12 months, owing to the fact that the Japanese captured all necessary documents and wirelessed all particulars to Gepminy. The Eliminator Tables oovered roughly a year, and when they had run out, reading ceased. The content of the messages dealing with events in the PLCIFIC had little more than an academic interest, and thereiore, no effort was later made to break the system cryptographically. In any case, SCHULZE's opinion is that it is unbreakable. He points out how extremely long it takes both to encipher and decipher. After the first information, they never recoived anything further from the Japanese.
4. U.S. NATY Call-Signs.

No success was achieved on the identification or breaking of US NAVY Call-Signs, and SCHULTE does not think ever could have been, although it is true that research was begun very late with very few people.

A changing callusign could be followed from day to day, of course, the internal addresses, such as: TUBA NITE, etc- being of use.

They were certainly considered to be enciphered on a frequently changing hatted alphabet and figure sequence.
5. Captured Machines.

The only captured machine in 4 SKL III was the HAGELIN, which had been found in DENMARK. SCHULES states that he has already been interrogated regarding his work and complete success on this machine. As stated above, he did a certain amount of preliminary work on TYPEX and Verfahren UTM, without success.
6. KORVETTEN KAPITAEN SINGER.

SINGER was a mathematician and expert on the ENIGMA machine. In the sumner of 1944, there was apparently a certain disquiet as to the possibility that the British were having some success, although nothing definite was known. SINGER's department was devoted into research on the breakability of the machine, using similar methods to SCHULZE's on HACELIN. The work was oonsidered sufficiently important to rob SCHUZE of some 20 men from his department, moh to his annoyance. SCHULZE does not know what conclusions SINGER reached, but in his opinion, if sufficient messages on the same setting were intercepted, it was probably breakable.
7. Liaison between different departments.

SCHULZe had very little information on this, and TRANOW had very little information either. It was apparently a matter of regret that departmental fealousies prevented any fruitful co-operation. OKi//Chi was generally considered the best department (oertainly the most richly provided in persomel), 4 SKL III came next, followed by OKH and LUFTWAFHE respectively.
8. Other work carried out by SCHULZe.

SCHULZE also carried out researches on SWEDISH machine and hand systems. He had no success with any SWEDISF machines, their peculiarity being that cipher letter counts showed the same results as normal clear SWEDISH letter counts. He also noticed this occasionally in some of the lesser known and lesser used U.S. machine ciphers.
9. Deviation Parcentage (FROZENTUALT STREUUNG)

Deviation Percenta was SCHUZRE's method of initial research inito now machine ciphers. At least 30,000 letters were first indexed. 30,000 was the minimum number of letters which produced consistent results. A percentage of the total for each individual letter was then worked out, and the lowest letter percentage was then subtracted from the highest letter percentage. The resultant percentage was the Deviation Percentage of the particular machine. A Deviation Percentage of over 2% indicated an insecure machine. The D.P. of HAGRIIN, for instance, was from 1.2% to 1.6%, whereas that of ENIGMA was from 0.8% to 1.0%. Individual letter percentage graphs were kept of different machines, and sorved as useful comparisons.
4.
10. The Z-Strip (z-raists)

The z-Strip mothod is manoly amothox xarixamont tor diastinulisining various machines one from another. After indexing 30,000 letters. (see 9 above) the letters are placed in order, the highest appearance first. Wach letter is then enciphered against the Z-Strip of a TRITMrieli Table (see Appendix 1). The Z-Strip was chosen because clear Z was by far the most numerous letter in clear HAGRLIN messages. Thus if the letter percentage order on a particular cipher was QWSXBGI etc., etc., comparison with the Z-Strip would give :

$$
\begin{aligned}
& Q=Z=17 \\
& W=Z=23 \\
& S=Z=19 \text { etc. }
\end{aligned}
$$

It was a characteristic of HAGEINN that the smaller differences, such as 2, 3, 4: 5 cwine against letters R to V, etc. Deviation Percentage and r-Strip investigations were the basis of distinction and coinparison between all codes, machine and non-machine. SCHJLZ mentions, in this connection, how the new Verfohren UMM was shown by this system to be distinot from TYPeX, and comments that UIM had various features in common with a SWEDISHmachine on which he had once worked.
11. The Λ-Strip (Λ-Leisto)

The A-Strip was a method of breaking into HLGHIN when two different messages were enciphered on the same setting. Although the method was evolved by SCHULZ hinself, he states that this seldom happened on NiAVAL traffic. The ARMY, however, intercepted many such messages, and used his system with success.
Method of Working. In Tig. 1 of ippendix 2 are two messages, one beginning "REPORI POSIMION", and one beginning "HMS BARHAM". Both messages are assumed. to be enciphered on the same setting, and the "clear-cipher" differences are shown in red above. Cipher 1 and Cipher 2 indicate the enciphered messages. Using two sliding reciprocal alphabets, the cryptographer now prepares 26 vertical versions of message 2 on the assumption in each case that each letter in message 1 is clear A, clear B, etc. For example, if in aessage 1 , cipher J equals clear A_{9}^{*} then N equals S, if W equals A, then Z equals X, etc., thus building up strip 1 in Fig. 2, unäer letter A, as KSXNRCIO, etc. The succeeding strips are built up on similar alphabetical assumptions. Fig. 2 is now cut up into 26 strizs.

The cryptographir, using his mowledge of standarā message beginnings, such as "Your, II, REPERETCE, REPORT, REOUEST', HMS" etc. arranges the strips "staircase-wise" (treppenartig), the top letter of each strip representing the letters of a clear message. He then looks in the body of the atrips horizontally for the elements of a clear word, which would represont the second message. In the example given in Fig. 3, HMS produces REP in the body of the strips. This is obviously REPORT, and by piecing the missing ORT from other strips thereto, he produces BAR at the top. Knowing of a ship BARHARI, he is then able to add strips HAR, thus giving him the letters POS next to RPPOR? in the body of the strips. Continuing in this manner, the two messages gradually emerge.
12. Machine Systems OTTO, SOFHIE, KARL, PAUL, RICHARD and hand systems SASSNITZ, HGA, SEDER, ZBB, FHY, FFF'F were all SWHDISH systems.

13. Conclusion.

SCHULZE's main successes were on the BRITISH NAVAL Subtractor Code, using a fixed book of subtractor tables for a considerable time (SCHULZE refers to this book as a WURM), and on the HAGELIN machine. He states he has already been exhaustively interrogated on these systems.

Quite obviously, no really intensive work was carried out by 4 SKL III on any other machine systems, although from time to time, inefectual attempts were made on TYPEX, UTM, etc, and on SWEDISH machines. HUETTENHAIN and SIEINBACH know more about machine ciphers other than HAGELIN than either SCHULZE or TRANOV. There was, incidentally, a HOLLERITH component at 4 SKL III. The HOLIERIITH machine is apparently made under license in GERMANY.

SCHULEF is an intelligent man of 44 years of age, who appears to have quite an original mind, although no highly trained formal mathematician. Like so many other German oryptographers, he would undoubtedly be delighted to continue in some form or another his eryptographic activities.

On the question of liaison with other departments, of which field both SCHULZE and TRANOW seomed able to say so little, no doubt KUPFER, who was head of the whole department, would know more. He was away at the time of my visit to HAMBURG, and I was unable to see him, According to SCHuLZE, however, his activities were purely orgenisational and he is no technicion.

22nd June, 1946.

CITSR	L2	18	1	7	1	12	5	7	?	c		etc					
CTMAR	1.	E	E	P	0	R	T	P	\because	3	I	m	1	0	1	cte	
CLFAR	2.	H	M	S	B	A	R	H	$2{ }^{2}$	M	otol						
CIEHER	1.	J	F	W	2	D	Y	W	X	A	\%	eto					
CIHHER	2.	2	N	2	M	:	T	0	J	U	tc						

1	2	3	4	5	6	7	8	9	10	11.	12	13	14	15	16	1	18	1	2			22	23	24	25	26
A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U		T	W	X	Y	Z
K	I	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E		F	G	H	I	J
S	T	U	V	可	X	Y	Z	4	B	C	D	E	F^{\prime}	G	H	I	J	K	L	1			-	P	Q	R
X.	Y	Z	1	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q			S	T	U	V	W
N	0	P	Q	R	S	T	U	V	W	X	\underline{Y}	2	A	B	C	D	E	F	G	H		I	J	K	I	M
R	S	T	U	V	VI	X	Y	2	A	B	C	D	E	F	G	H	I	J	K	I			N	0	P	Q
C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W			Y	2	$A^{\text {A }}$	B
I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	2	A	B	C	D		E	E	G	H
0	P	Q	R	5	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J		K	L	M	N

					18
				I	R
			2	A	B
		19	B	K	J
	13	S	\pm	S	0
8.	M	c	T	x	E
H	V1	K	Y	N	I
R	E	P	0	R	T
Z	J	F	S	C	2
B.	2	J	D	I	F
U	D	U	J	0	
Y	0	A	P		
J	U.	G			
E	A				
T					

